首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3840篇
  免费   84篇
  国内免费   130篇
  2023年   24篇
  2022年   32篇
  2021年   37篇
  2020年   38篇
  2019年   49篇
  2018年   71篇
  2017年   60篇
  2016年   42篇
  2015年   85篇
  2014年   269篇
  2013年   352篇
  2012年   287篇
  2011年   366篇
  2010年   284篇
  2009年   134篇
  2008年   142篇
  2007年   123篇
  2006年   116篇
  2005年   101篇
  2004年   98篇
  2003年   102篇
  2002年   70篇
  2001年   41篇
  2000年   41篇
  1999年   77篇
  1998年   55篇
  1997年   46篇
  1996年   66篇
  1995年   43篇
  1994年   60篇
  1993年   49篇
  1992年   50篇
  1991年   39篇
  1990年   27篇
  1989年   36篇
  1988年   20篇
  1987年   38篇
  1986年   31篇
  1985年   36篇
  1984年   68篇
  1983年   54篇
  1982年   45篇
  1981年   50篇
  1980年   39篇
  1979年   50篇
  1978年   24篇
  1977年   19篇
  1976年   19篇
  1974年   14篇
  1973年   14篇
排序方式: 共有4054条查询结果,搜索用时 15 毫秒
11.
Disassembly of RecA protein subunits from a RecA filament has long been known to occur during DNA strand exchange, although its importance to this process has been controversial. An Escherichia coli RecA E38K/ΔC17 double mutant protein displays a unique and pH-dependent mutational separation of DNA pairing and extended DNA strand exchange. Single strand DNA-dependent ATP hydrolysis is catalyzed by this mutant protein nearly normally from pH 6 to 8.5. It will also form filaments on DNA and promote DNA pairing. However, below pH 7.3, ATP hydrolysis is completely uncoupled from extended DNA strand exchange. The products of extended DNA strand exchange do not form. At the lower pH values, disassembly of RecA E38K/ΔC17 filaments is strongly suppressed, even when homologous DNAs are paired and available for extended DNA strand exchange. Disassembly of RecA E38K/ΔC17 filaments improves at pH 8.5, whereas complete DNA strand exchange is also restored. Under these sets of conditions, a tight correlation between filament disassembly and completion of DNA strand exchange is observed. This correlation provides evidence that RecA filament disassembly plays a major role in, and may be required for, DNA strand exchange. A requirement for RecA filament disassembly in DNA strand exchange has a variety of ramifications for the current models linking ATP hydrolysis to DNA strand exchange.  相似文献   
12.
13.
The GH3 family of acyl-acid-amido synthetases catalyze the ATP-dependent formation of amino acid conjugates to modulate levels of active plant hormones, including auxins and jasmonates. Initial biochemical studies of various GH3s show that these enzymes group into three families based on sequence relationships and acyl-acid substrate preference (I, jasmonate-conjugating; II, auxin- and salicylic acid-conjugating; III, benzoate-conjugating); however, little is known about the kinetic and chemical mechanisms of these enzymes. Here we use GH3-8 from Oryza sativa (rice; OsGH3-8), which functions as an indole-acetic acid (IAA)-amido synthetase, for detailed mechanistic studies. Steady-state kinetic analysis shows that the OsGH3-8 requires either Mg2+ or Mn2+ for maximal activity and is specific for aspartate but accepts asparagine as a substrate with a 45-fold decrease in catalytic efficiency and accepts other auxin analogs, including phenyl-acetic acid, indole butyric acid, and naphthalene-acetic acid, as acyl-acid substrates with 1.4–9-fold reductions in kcat/Km relative to IAA. Initial velocity and product inhibition studies indicate that the enzyme uses a Bi Uni Uni Bi Ping Pong reaction sequence. In the first half-reaction, ATP binds first followed by IAA. Next, formation of an adenylated IAA intermediate results in release of pyrophosphate. The second half-reaction begins with binding of aspartate, which reacts with the adenylated intermediate to release IAA-Asp and AMP. Formation of a catalytically competent adenylated-IAA reaction intermediate was confirmed by mass spectrometry. These mechanistic studies provide insight on the reaction catalyzed by the GH3 family of enzymes to modulate plant hormone action.  相似文献   
14.
Summary This study is concerned with electron-microscopic observations on endocrine or paracrine cells in the fundic gastric mucosa of the bullfrog. Also, an attempt was made to identify the histamine-releasing cells involved in the secretagogue response. At least three distinct endocrine-like cell types were found. The classification is based on the appearance of secretory granules and other organelles, and the relationship of endocrine-like cells with other cells in the tissue. The amphibian endocrine-like cells resemble the ECL, D and EC cells of mammals. Type-I (ECL) cells showed degranulation after repeated stimulation with tetragastrin (TG), acetylcholine (ACh) and K+ depolarizing solution, all of which release histamine.  相似文献   
15.
We report herein a critical role for the stringent response regulatory DnaK suppressor protein (DksA) in the coordination of antioxidant defenses. DksA helps fine-tune the expression of glutathione biosynthetic genes and discrete steps in the pentose phosphate pathway and tricarboxylic acid cycle that are associated with the generation of reducing power. Control of NAD(P)H/NAD(P)+ redox balance by DksA fuels downstream antioxidant enzymatic systems in nutritionally starving Salmonella. Conditional expression of the glucose-6-phosphate dehydrogenase-encoding gene zwf, shown here to be under DksA control, increases both the NADPH pool and antioxidant defenses of dksA mutant Salmonella. The DksA-mediated coordination of redox balance boosts the antioxidant defenses of stationary phase bacteria. Not only does DksA increase resistance of Salmonella against hydrogen peroxide (H2O2), but it also promotes fitness of this intracellular pathogen when exposed to oxyradicals produced by the NADPH phagocyte oxidase in an acute model of infection. Given the role of DksA in the adjustment of gene expression in most bacteria undergoing nutritional deprivation, our findings raise the possibility that the control of central metabolic pathways by this regulatory protein maintains redox homeostasis essential for antioxidant defenses in phylogenetically diverse bacterial species.  相似文献   
16.
Indirect evidence has suggested that the Msh2-Msh6 mispair-binding complex undergoes conformational changes upon binding of ATP and mispairs, resulting in the formation of Msh2-Msh6 sliding clamps and licensing the formation of Msh2-Msh6-Mlh1-Pms1 ternary complexes. Here, we have studied eight mutant Msh2-Msh6 complexes with defective responses to nucleotide binding and/or mispair binding and used them to study the conformational changes required for sliding clamp formation and ternary complex assembly. ATP binding to the Msh6 nucleotide-binding site results in a conformational change that allows binding of ATP to the Msh2 nucleotide-binding site, although ATP binding to the two nucleotide-binding sites appears to be uncoupled in some mutant complexes. The formation of Msh2-Msh6-Mlh1-Pms1 ternary complexes requires ATP binding to only the Msh6 nucleotide-binding site, whereas the formation of Msh2-Msh6 sliding clamps requires ATP binding to both the Msh2 and Msh6 nucleotide-binding sites. In addition, the properties of the different mutant complexes suggest that distinct conformational states mediated by communication between the Msh2 and Msh6 nucleotide-binding sites are required for the formation of ternary complexes and sliding clamps.  相似文献   
17.
Mitochondrial 4-aminobutyrate aminotransferase in rat kidney can utilize pyruvate as the acceptor for the amino group of 4-aminobutyrate. Renal 4-aminobutyrate aminotransferase activity at saturating equimolar concentration of 4-aminobutyrate and 5 mM pyruvate is 42.8 ± 2.5 μmol/g protein per h (mean ± S.E.M.) or 70% of 4-aminobutyrate aminotransferase activity with equimolar α-ketoglutarate. 4-Aminobutyrate aminotransferase in brain does not transaminate with pyruvate. Since pyruvate is an important mitochondrial metabolite in kidney, net disposal of glutamate via the 4-aminobutyrate pathway is possible. The renal 4-aminobutyrate pathway in the rat has other distinctive features when compared with the pathway in rat brain. Most inhibitors of rat neuronal glutamate decarboxylase were ineffective against the renal form of the enzyme, but 20 mM semicarbazide inhibited the latter form by 80% (P < 0.001) in vitro and reduced renal 4-aminobutyrate content by 75% (P < 0.001) in vivo. In the presence of 20 mM semicarbazide, ammoniagenesis by rat renal cortex slices incubated in 1 mM glutamine was inhibited 26% (P < 0.01). Semicarbazide was proportionately less effective (15% inhibition) when ammoniagenesis was stimulated (+243%) in slices prepared from chronically acidotic animals, and was no deterrant to ammoniagenesis when non-acidotic slices were incubated in supraphysiologic concentrations of 10 mM glutamine. We conclude that whereas integrity of the renal 4-aminobutyrate pathway may contribute to glutamate disposal and thus ammoniagenesis under physiologic conditions, the pathway is a passive participant in the overall process of ammoniagenesis.  相似文献   
18.
19.
20.
A coiled-coil microtubule-bundling protein, p180, was originally reported as a ribosome-binding protein on the rough endoplasmic reticulum (ER) and is highly expressed in secretory tissues. Recently, we reported a novel role for p180 in the trans-Golgi network (TGN) expansion following stimulated collagen secretion. Here, we show that p180 plays a key role in procollagen biosynthesis and secretion in diploid fibroblasts. Depletion of p180 caused marked reductions of secreted collagens without significant loss of the ER membrane or mRNA. Metabolic labeling experiments revealed that the procollagen biosynthetic activity was markedly affected following p180 depletion. Moreover, loss of p180 perturbs ascorbate-stimulated de novo biosynthesis mainly in the membrane fraction with a preferential secretion defect of large proteins. At the EM level, one of the most prominent morphological features of p180-depleted cells was insufficient ribosome association on the ER membranes. In contrast, the ER of control cells was studded with numerous ribosomes, which were further enhanced by ascorbate. Similarly biochemical analysis confirmed that levels of membrane-bound ribosomes were altered in a p180-dependent manner. Taken together, our data suggest that p180 plays crucial roles in enhancing collagen biosynthesis at the entry site of the secretory compartments by a novel mechanism that mainly involves facilitating ribosome association on the ER.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号